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ABSTRACT

This research has focused upon developing improved texture analysis

algorithms. Work performed during the second year of the grant has shown

that the Spatial Gray Level Dependence (SGLDM) texture analysis algorithm

is a superior algorithm under fairly weak assumptions. For this reason

our subsequent work has continued the development of the SGLDM method.

Tiling theory has been combined with the SGLDM analysis procedure to

create a structural (SSA) analyzer for texture patterns. Recent work

has focused upon determining measures derived from the SGLDM cooccurence

matrices that characterize texture patterns. It has been shown that the

commonly used measures are inadequate. A texture generation procedure

has been developed and this has been used to generate new measures based

upon the perceptual concepts of uniformity and proximity. These measures

offer premise of developing measures related to perceptual features.

Experiments were also conducted which shows that the SGLDM algorithm can

discriminate known counterexamples to the Julesz conjecture. Thus the

robustness of the SGLDM has been further established over this theoreti-

cally troublesome class of textures.
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I. INTRODUCTION

This research project is concerned with developing a better under-

standing of texture analysis algorithms. It is believed that an under-

standing of texture analysis is essential if one is to build effective

image understanding systems, Our approach to developing improved texture

analysis methods has been to remove the heuristics so often used and

instead rely upon mathematical theory and sound experiments.

During the current year substantial progress has been made in

developing our system. Two Perkin Elmer 32 bit computers have been ex-

panded to 1N Bytes of memory each. A substantial number of tape drives

and disc drives have also been added. A Television Scanning System and

a map digitizing table have also been brought on-line. The vidicon

scanning system allows one to scan images at eigher 256 x 256, 512 x 512

or 1024 x 1024 resolution with 8 bits of gray level information. The

system includes a computer controlled XY stage to move the images under

the camera. The XY state can move a maximum of 16" in either the X or

Y direction. Also purchased was a 600 mm - 150 manual zoom lens. This

system provides us, for the first time, the capability to scan images

inhouse. It will allow us to apply the methodologies we develop to real

world data to verify their robustness.

Also a Daedaleus multispectral scanner (12 channels) has been ac-

quired and installed in an aircraft. The airplane system is housed

within the Louisiana Department of Natural Resources. This system can

digitize 11 channels of data simultaneously. Of these 11 channels ten

are fixed as to the wavelengths they measure. These are listed below:
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Wavelength

Channel 1 .38- .42pm
Channel 2 .42- .45um
Channel 3 .45- .50pm
Channel 4 .50- .55um
Channel 5 .55- .60um
Channel 6 .60- .65pm
Channel 7 .65- .69jm
Channel 8 .70- .79pm
Channel 9 .80- .89pm
Channel 10 .92-1 .O1nm

The llth channel can either be set to measure an IR region in the 8. -

14.pm range or a UV region in the .3 - .38jm range. The system is valued

at $500,000. This system is unique to universities and should greatly

enhance our data collection abilities. Under contract to RADC our soft-

ware system has been expanded to include a comprehensive texture analysis

module. This system will not be reported in detail here but provides

very useful facilities for experimenting with and analyzing texture pat-

terns.

Our work on texture analysis has continued the development of the

structural analyzer (SSA) for texture patterns. It has also focused

upon methodologies which can match the mechanisms of humans perception.

The desire has been to create operators which can describe and discrimi-

nate visually distinct textures. In this regard new measures have been

developed that characterize the visual properties of uniformity and

proximity.
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II. OBJECTIVES

The objectives of the work during the current year were to:

1. Develop Improved Method for Generating Texture Patterns.

2. Study the Adequacy of the SGLDM Texture Analysis Method to
Model Primitive Mechanism of Human Texture Perception.

3. Fully Investigate the Properties of the Unit Cell for Texture
Patterns.

4. Further Develop the Results on Using Tiling Theory in Structural

Analysis of Textures.

5. Develop New Features for the SGLDM.

6. Develop Methods for Measuring the Similarity of Texture Patterns.

Substantial progress has been obtained in meeting these objectives.

The work will be described in the next section.

[.

-3-'



III. STATUS OF RESEARCH

Our research work has concentrated upon developing the statistical

and structural texture analysis system (SSA), verifying the sufficiency

- of first and second order statistics for texture discrimination and

identifying new measures derived from the SGLDM (cooccurence) matrices

that characterize visually perceived properties of texture patterns.
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A. The StatiLztcat StActutwt AnatyzeA

The Statistical Structural Analyzer (SSA) represents an attempt by

the authors to create a structural textural analyzer based on statistical

methods. The SSA was first introduced in [1]. Here it was shown that

the SSA could be used to detect periodicity and also could be used to

characterize the size and shape of unit patterns and the placement rules of

these patterns in periodic and almost periodic textures; things which should

be the heart of any structural textural analyzer.

The SSA is formulated around the Spatial Gray Level Dependence Method

(SGLDM) [1, 2, 3, 4, 5, 6] for doing texture analysis. Computationally the

heart of the SGLDM is the spatial gray level dependence matrices S(6) =

[s(i,j,6)]. An element s(i,j,6) of the matrix S(6) represents the es-

timated probability of going from gray level i to gray level j given the

displacement sector 6 = (An, Am) where An and Am are integers.

In what follows it is convenient to think of 6 in the polar form,

6 = (d,e) rather than in the cartesian form (An, Am). The conversion

between the cartesian form and the convenient polar form is given by

d - max [An,Am]

e - arc tan (Am/An).

In this polar form the parameter d is referred to as the intersample

spacing distance and e is referred to as the angular orientation.

In using the SGLDM with the SSA, the matrix S(6) is not forced to

be symmetric as is commonly done by many investigators. The reason

for not forcing the matrix S(6) to be symmetric is discussed in [2].

Consequently S(6) for 6 - (d,6) may not equal S(6') for 6' - (d,8+180*).

It is of interest to note that if S(6) is computed from a random

field X(nm) which is ergodic and translation stationary of order two

-4-



and further if the region from which S(6) is calculated is square with

side h then

lia S() - [P(X(O) = i, X(O+6) J j)] ()
h-

where 0 is the zero vector.

During the course of the last funding year we have concentrated on

the continued development of the SSA. Further during the proposed funding

year it is our intention to continue to develop the SSA. Consequently it

seems worthwhile to explain why our emphasis is so ncentrated. The best

way to do this would seemingly be to review the aF ,ptions behind the SSA

and state the scientific evidence supporting each imption.

The first assumption stated is the most impor and fundamental to

all our research. It explains our concentration on developing an advanced

texture analysis procedure around the SGLDM.

Aa6zuption I: The SGLDM i6 the mo6t powe,6ut 6,att-icat texture analy&Z,

agoriZthm. That i, it iz a66umed that the inteAediate mat 'es, namely,

the 6patiat gray tevet dependence mattice., contain more important textuwe-

context in6omation than the intermediate matca o6 any otheA &tati6ticat

texturte anaeyi,6 aZgor.itm.

Since this is such an important assumption, one in which all of our

work depends, it seems advisable to discuss the supporting evidence in

some detail. Basically this evidence comes from studies done by per-

ceptual psychologists, comparison studies done evaluating a number of

texture analysis algorithms and finally the published successful uses of

the SGLDM is solving real world texture analysis problems.
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As to the studies done by perceptual psychologists, the most notable

of these is the one done by Bela Julesz [7] in 1962. In this study

Julesz presented experimental evidence which showed that if two textures

can be spontaneously discriminated by the human then these textures have

different second-order probabilities. This has become known as the Julesz

conjecture. Further he showed that two textures can have different second-

order probabilities but still not be discriminable by the human visual

system. An example of such a texture pair is given in Figure 1. The tex-

ture pair in this example came from [7].

Further experimental conformation of the Julesz conjecture was pro-

vided by Pratt et al in a recent paper [8] and also by Julesz, himself,

in a 1973 paper [9]. The Julesz conjecture has been the cause of some de-

bate among perceptual psychologists. Pollack [10] and Purks and Richards

[11] have on separate occasions claimed to have valid counterexamples.

However, these counterexamples are nut true ones [8].

Further substantiation of Assumption I comrs from two comparison studies

which have been done which evaluate a number of texture algorithms. These

comparison studies are of some interest within themselves so we will

digress a bit to discuss them.

Beginning in the late 1960's and continuing up until today a number

of texture analysis algorithms have been put forth in the literature. Most

if not all of the algorithms measure all or some subset of the second-order

probabilities either directly or indirectly, i.e. they measure some function

of these probabilities. Consequently few if any of these algorithms canl

be immediately dismissed as being inferior.

The problem that presents itself is that given a particular texture

analysis problem which algorithm would be the best one to use to attack it.

-6-
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Figure 1. Two textures which have different second-order probabilistics
but which are not discriminable to the human observer. The
larger field contain (a), (b), (c) and (d) micropatterns of
Figure 2 whereas the smaller field only (a) and (c).

a b C d

Figure 2. Micropatterns used to generate textures in Figure 1.

-7-



The first true comparison study was done by Weszka, Dyer and Rosenfeld

[12]. The algorithm- compared were the SGLDM; the Gray Level Difference

Method (GLDM), [12]; the Power Spectral Method (PSM) [13]; and the Gray

Level Run Length Method (GLRLM) [14]. The standard for comparison used

in this study was the percentage of overall correct classification obtained

on a fixed data base of textural types. The results of the study indicated

that the SGLDM and GLDM were about equal in ability and both were better

than the PSM or GLRLM.

The next comparison study [2] was performed by the authors and con-

sidered the same four algorithms. This comparison method attempted to

determine information about these algorithms which cannot be obtained

from the classification result comparison method (CRC) used by Weszka,

Dyer and Rosenfeld. The difficulty with the CRC is that it compares the

whole texture analysis systems. In particular it cannot be used to de-

termine whether the poor performance of the PSM on a particular data

base is caused because the information which will allow the discrimination

of the textural classes is not contained in the power spectrum or rather

because the features defined off the power spectrum do not reflect the dif-

ferences in the power spectrum which would allow the discrimination. The

theoretical comparison employed considered only the amount of texture dis-

crimination information contained in the intermediate matrices of each of

the algorithms. The results of this comparison study showed that the

SGLDM was the most powerful of the four algorithms. Further counter-

examples were given which showed visually distinct textures which could

not be discriminated by each of the other three algorithms.

Both of these comparison studies indicate that the SGLDM is a powerful
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algorithm. Admittedly not all the known algorithms have been compared to

the SGLDM to prove its absolute superiority but nonetheless these studies

indicate it is relatively powerful based on all known comparative data.

The final supportive data for Assumption 1 comes from the many suc-

cessful uses of the SGLDM to solve applications problems. References

(4, 5, 6, 15, 161 are just a few such examples. This record of performance

on real world data would also seemingly indicate the power of the SGLDM.

Unfortunately there is also some growing evidence indicating that

second-order probabilities may not be a good model for the primitive

mechanisms of human perception. Obviously, such evidence necessarily

casts doubt on the overall robustness of the SGLDM. This evidence is the

growing number of counterexamples to the Julesz conjecture which have

appeared in the literature since 1977 [17, 18, 19, 20]. These counter-

examples, some of them quite striking, are visually distinct texture pairs

which have identical second-order probabilities.

Because of the existence of these counterexamples seemingly directly

challenges the validity of Assumption 1, the basic assumption upon which

all of our work has been based, a study of these counterexamples was con-

ducted during the last funding year. The precise results of this study

will be reported in the next subsection of this progress report. It suf-

fices here to say that it was found that the SGLDM could discriminate each

of these counterexamples using the principle of what we call global/local

analysis. This was part of subtasks 1 and 2 of the renewal proposal.

An important point to bring out at this time is that there is no known

example of a visually distinct texture pair which cannot be discriminated by

the SGLDM.

This leads us to the second assumption.

-9-



A,6mption 2: Tnformation conceuding the vi4uaL quata o6 patteAt can

be %etiabty obtained Som the.6pata gay tevet dependence ma, tuice.6 only

when tha~e mat oAe computed 6o& .6eveat di6deAent vaLue6 o6 e and 6ev-

e)at di66e'ext conecuti.ve vatu6 o6 d 6o each e coneideAed.

It is important to note that the above assumption makes no statement

about the number of d and 8 values which need be considered since obviously

these numbers are problem dependent.

In presenting arguments to support this assumption, let us begin by

examining the visually distinct texture pair shown in Figure 3. This Markov

texture pair was generated using a precedure described in [2]. The tran-

sition matrices used to create these textures are given in Table 1.

The interesting point about these textures is that only two angular

orientations, namely, 8 = 0 or e - 1800, will allow the SGLDM to discrimi-

nate these textures. Even when 8 = 00 or 8 - 1800 an intersample spacing

distance of d = 2 will yield identical expected values for the spatial gray

level dependence matrices computed from these textures. That is E{S (1)(6) =

E{S (2) (6)) 6 = (2,0°) or 6 = (2,180
°) where S(1 )(.) represents the spatial

gray level dependence matrices extracted from one texture and S (2)(.) repre-

sents the spatial gray level dependence matrices extracted from the other

texture in the pair. What this example and many other easily generated

examples indicate is that several different 8 values may have to be con-

sidered to find those directions which will allow discrimination and that

given a particular 8 no single d value will yield a spatial gray level de-

pendence matrix which has much information concerning the visual qualities

of the pattern.

Other supporting evidence for this assumption coms from studies con-

ducted on real world data. Weszka, Dyer and Rosenfeld [12] reported

10



Figure 3. Two textures which can only be discriminated in thee 00 or
e - 1800 directions. Further even in these two directions a
d value of 2 will yield identical expected values for the spa-
tial gray level dependence matrices computed from these tex-
tures.

-11-
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.6 0 0 .4

.4 .6 0 0
(A)

0 .4 .6 0

0 o .4 .6

0 .4 .6 0

0 0 .4 .6
(B)

.6 0 0 .4

.4 .6 0 0

(C) [ .25 .25 .25 .251

Table 1. The Markov transition matrices used to generate the two tex-
tures in Figure 3. (a) The transition matrix for creating
the texture on the left. (b) The transition matrix for the
texture on the right. (c) The initial distribution used to
pick the first element of every row. The synthesis procedure
used to generate these textures is described in [2].

-12-
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improvements in classification accuracies when multiple d values were used.

The data base for this study were aerial photographs in one instance and

Landsat data in another. In [6] the authors reported improvements in class-

ification accuracies in classifying lung infiltrates on chest radiographs

when multiple d values were used. Also Kruger et al [15] used two d values

in a study involving the automatic classification of Coal Workers' Pneu-

moconiosis. Presumably the only reason why two d values would be used

would be because classification accuracies were improved. In all the above

studies only four values of e were considered, namely 00, 45, 90* and 135".

Still more evidence supporting Assumption 2 comes from the authors'

study [1] which showed that if enough d and 0 values were considered then

the periodicity of a texture could be determined as well as the size, shape

and placement rule of a special unit pattern called the period parallelogram

unit pattern. In particular, it was shown that plots of the inertia feature

I(s) - ZZ (i-J) 2 s(i,J,6) (2)

ij

as a function of d for a given 8 allow one to detect periodicity in the

6 direction. Considering such plots for several values of 6 allow one to

determine the size, shape and placement rules of the period parallelogram

unit pattern, i.e., the vectors a and b shown in Figure 4.

With the above in mind there is one other area of perceptual research

that needs to be mentioned. It has been known for sometime that the human eye

is always in motion. Even under conditions where steady fixation is at-

tempted, small, involuntary movements of the eye are always present. Knowl-

edge of these movements has generated experimental attempts to understand

their role in the visual process. The questions which these Investigations

have attempted to answer are: (a) What is the nature and extent of the

involuntary eye movements? (b) What effect does these movements have on

-13-
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Figure 4. The vectors a and b completely define the size and shape of
the period parallelogram unit pattern. Further these two
vectors define the placement rules for this unit pattern.

-14-



the visual process?

Ratliff and Riggs [21] provide an answer to the first question.

Their results indicate that the involuntary movements consist of: a

slow drift of the eye; a rapid, jerking movement (saccadic); and a small,

rapid tremor superimposed on the drift.

The experimental methods which have been used to attack the second

problem have been to stabilize the retina image. The point of interest

has been to determine the effects on the visual process of reducing or

stopping the involuntary movements of the eye. Heckenmueller [22] pro-

vides an excellent review of these experiments.

While this area of investigation has been the subject of some con-

troversy, one fact seems clear; when the image of a visual target is

stabilized on the retina, the image disappears and gives way to a homo-

geneous field. This fact has lead investigators to believe that the

effect of involuntary eye movements is primarily one of overcoming the

loss of vision resulting from constant stimulation of the retina. That

is, the effect of the movements is to provide changing sensory stimulation

of the spatial variety.

The reason for mentioning these studies is that they indicate the

eye is responding not to absolute light intensity values but rather dif-

ferences in intensity over some spatial movement. That is, the eye seems

to be responding to changes from gray level i to gray level j given a

spatial displacement 6. Of course, this is precisely the type of varia-

tion that is being measured by the spatial gray level dependence matrices.

The rapid eye movements can be interpreted as measuring these spatial

variations in gray level over numerous directions e and magnitudes of

displacement d. This interpretation, albeit it a loose one, seems to

-15-



imply that the underlying assumptions stated above may, indeed, be based

on the actual human processes of vision.

Now that the basic assumptions have been stated, evidence supporting

these assumptions presented and documentation given that these concepts

may be used in the human visual process, it seems appropriate to define

the structure of the SSA. Actually a precise definition of the structure

of the SSA at this juncture in time is not possible. The SSA is still

under development and additional information is needed before any degree

of precision can be added to the hierarchy the analyzer will take. However,

what is known is that the SSA has at least two levels of features, Level

0 and Level 1. Level 0 features are the primitive features which drive

the whole cystem. An example of a Level 0 feature is the inertia measure

computed for a particular 6. From the above it should be clear that a

Level 0 feature, by itself, contains little information about the visual

quality of a pattern. However, a Level 0 can be used to do classical tex-

ture discrimination. That is, given a sample region A these features can

be used to determine whether the pattern of region A belongs to one of,

say, n given classes of patterns. Examples of this classical type discrim-

ination are given in references [4, 5, 6, 12, 15, 16]. This type of anal-

ysis usually employes statistical feature selection and pattern recognition

procedures. Further, this type discrimination is such that given the auto-

matically selected features and decision boundaries it is usually impossible

to correlate these features with any visual qualities of the patterns in-

volved.

The Level 1 features of the SSA are computed not from the pattern

but rather from the Level 0 features. A Level 1 feature, for example may

be computed from values of the inertia measure obtained for several d and

-16-



0 values. Examples of four Level 1 features would be the coordinates

of the vectors a and b which define the size, shape and placement rule

of the period parallelogram unit pattern of a periodic texture. It is the

Level 1 features which give information about the visual qualities of

patterns.

Level 1 features should provide us advanced capabilities. In par-

ticular, they would seem required in determining texture similarity.

They can be used to guide image segmentation, i.e., they can be used to

determine not only that a split is needed but also what the region size

of each new region should be, for example, as in segmenting an image com-

posed of two or more textures all of which have the same periodicity.

They would seemingly provide a convenient mechanism by which semantic

information about textures could be incorporated into the analysis process.

At this point in time of our development effort, only one Level 0

feature has been defined. This is the inertia feature. It is a bonafied

Level 0 feature because in [1] it was shown that this feature could be

used to measure visual qualities of patterns. It is also known that other

Level 0 features are needed. Figure 5 shows two visually distinct tex-

ture patterns which have identical values for the inertia feature for any

given 6. Consequently, this texture pair cannot currently be discriminat-

ed by the SSA, though the spatial gray level dependence matrices contain

information which will allow their discrimination.

The goal now must be to define more Level 0 features, features which

will given the system greater capability. Since the capability of the SSA

clearly rests on having a number of quality Level 0 features, the develop-

ment of this feature set must be done very carefully. Our goal is to re-

move as much as possible the role of heuristics in defining any new Level

-17-
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0 features. The idea is to create a method for generating new Level 0

features based on experimental parametric methods.
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B. On Diz.Wirinating Tex twi Which Have IdenticaZ Firzt- and Second-OrdeA

Prw babLit~i.te

Assumption 1 would seem based in part on the validity of the Julesz

conjecture. Since recently there has been a number of rather striking

counterexamples to this conjecture, it seemed advisable to examine these

counterexamples in some detail. The idea is to check the robustness of

the SGLDM algorithm. If this algorithm cannot discriminate the known

counterexamples to the Julesz conjecture then one must wonder whether

the continued development of any new approaches to texture analysis based

on the SGLDM would be appropriate.

In what follows we will provide a brief background on the investi-

gations related to the Julesz conjecture. In particular we will concentrate

on the synthesis procedures which have been devised to generate texture

pairs which have identical first-and second-order probabilities. Finally

we will present our analysis methods used to discriminate these textures.

To begin it seems appropriate to review the origins of the Julesz

conjecture, itself. This conjecture represents the results of a 1962 study

[7] to determine the smallest value of n such that if two textures A and B

have identical nth-order probabilities but different (n+l) - order prob-

abilities, no human discrimination of these textures would be possible. To

perform this study required a synthesis procedure for creating textures

with controllable nth-order probabilities. The procedure used was developed

by Rosenblatt and Slepian [23]. Unfortunately the Rosenblatt and Slepian

synthesis procedure could generate only a very limited class of textures.

Because the results of the 1962 study were based on such a limited

class of experimental data, the validity of the Julesz conjecture has

-20-



always been somewhat suspect. Consequently, a number of investigators

have attempted to disprove the conjecture by generating counterexamples

of its validity. Two early attempts were done by Pollack [10] and Purks

and Richards [11]. Unfortunately these investigators did not consider

the most general form of the Julesz statement of his conjecture and hence

their examples texture were not true counterexamples [8].

Other studies aimed at determining the validity of the Julesz con-

Jecture were reported by Pratt, Faugeras and Gagalowicz [82] and Julesz,

Gilbert and Shepp [9). Pratt et al expanded on Julesz's original work

(7] by using the Rosenblatt and Slepian synthesis method. They also

developed a new method for synthesizing texture pair which have identical

second-order probabilities. However, none of the experimentation done

using these methods yielded a counterexample.

Julesz, Gilbert and Shepp developed four new synthesis methods for

use in their study. The proofs that these methods generate texture pairs

which have identical first-and second-order probabilities is given in a

report by Gilbert and Shepp [24]. Each of the methods used generate a

texture by using a single "micropattern" whose placement is controlled by

two operations, i.e. a translation and perhaps a rotation. The transla-

tions used were such that the individual micropatterns did not overlap

and further the micropatterns were at least some minimum distance apart.

If random rotation were used, the angles were chosen independently with

angles distributed with constant density in [0, 2w].

Extensive experimentation using the new synthesis methods did not

yield any successful counterexamples. The experimental procedure employ-

ed required that the texture pairs be discriminable within 200 ms. This
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procedure was used since the investigators were interested in spontaneous

discrimination, i.e., that which can be done without scrutiny.

One of the synthesis methods used is called the method of 180" rota-

tions. This method uses micropatterns a and its dual B derived by rotat-

ing a by 180". The textures A and B are derived from a and 8, respectively,

by using the same translations to produce a pair of textures with identical

second-order probabilities. Random rotations are not used. A texture

pair generated using this method is shown in Figure 6. Note that while

the textures cannot be discriminated spontaneously they can be discriminat-

ed with scrutiny.

Another synthesis method used in [9] is called the method of mirror

transform. Using this method the micropattern used to generate texture B

is a mirror image of the micropattern used to generate the texture A.

The same translation is used to place the micropatterns in both textures.

The patterns must be randomly rotated to give textures with identical

second-order probabilities. Figure 7 shows a texture pair generated us-

ing this synthesis method. Obviously these textures cannot be discrimi-

nated spontaneously and even a careful examination of the image does not

yield a good discrimination.

Another synthesis method used in [9] is called the 4-disk method.

The way the two micropatterns are constructed in this method is shown in

Figure 7A. A triangle KLM is drawn. In the middle of one of its sides,

say, LM, a point 0 is placed. Connecting 0 with K form a line segment

OK. At the point 0 a line perpendicular to OK is drawn. Finally, two

points P and Q are selected on this line such that PO - QO. One micro-

pattern consists then of four nonoverlapping disks with their centers

at the points K, L, M and P while the other micropattern consists of
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Figure 7. Two textures generated using the met~hod of mirror image. These
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minaton of these textures is difficult even upon a careful ex-
amina&ton of the i CageW
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Figure 7A. The 4-disk method for generating textures which have iden-
tical second-order probabilities. (a) An example of the
geometry used in the 4-disk method. (b) Shows how the two

micropatterns are generated from this geometry. (c) Shows
the resulting micropatterns.
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the same disks centered at K, L, M and Q. These micropatterns are then

placed using the same set of translations. One micropattern is used to

generate texture A and the other is used to generate texture B. Random

rotations of the micropatterns are required to generate textures with

identical second-order probabilities.

The advantage of this synthesis method over the other two is that

one can find micropatterns which appear very different. An example

texture pair generated using this procedure will be given in Figure 8.

The texture pair in Figure 8 was one of those examined by Julesz et al

in [9]. While these textures are not spontaneously discriminable, a care-

ful examination will yield a good discrimination.

The fourth method described by Julesz, et al, in [9] is the one that

yielded the weak counterexample. However, this synthesis procedure is

very limited. Consequently we will not discuss it. However, the weak

counterexamples are shown in Figure 9.

The next research of interest was reported by Caelli and Julesz

[17] and Caelli, Julesz and Gilbert [18]. These papers are of interest

because

a) they presented the first good counterexamples to the Julesz
conjecture;

b) they attempted to explain the human discrimination of textural
patterns which have identical second-order probabilities;

c) and they presented some interesting techniques for both isolating
the counterexamples and in studying the problem to arrive at an
explanation of the human discrimination of these counterexamples.

Concerning the last point Caelli, Julesz and Gilbert used Monte Carlo

methods to find counterexamples. For example the 4-disk method has a

number of variable parameters such as the positions of the points K,L, and It.

These positions were randomly varied and the resulting texture pairs

were examined to determine whether they were visually distinct.
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Figure 8. A texture pair generated using the 4-dish method. While these

textures are not spontaneously discriminable, i.e., discrimina-
tion is less than 200 ins, they can be easily discriminated un-

der a more careful examination.
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Also in formulating their explanation for the discrimination of

texture pairs which have identical second-order probabilities, the in-

vestigators followed another interesting series of steps. These are out-

lined as follows:

1. Using a particular synthesis procedure randomly generate texture
pairs which have identical second-order probabilities. The

purpose of this step is to isolate a set of texture pairs which

are spontaneously discriminatable to the human observer.

2. Using this set of visually distinct textures attempt to isolate

the visual quality or qualities that seemingly explain the dis-

crimination of these textures.

3. If step 2 is possible, synthesis texture patterns with varying
degrees of this visual quality and show that as this visual

quality becomes more pronounced the discrimination becomes more

obvious.

Also in [17] and [18] two new texture synthesis methods were introduced.

First of these is the 5- and 6-disk method. In this discussion only

the 6-disk formulation will be presented since the 5-disk synthesis

technique is a degenerate case of the 6-disk method. In this procedure

the centers of the 6-disks of one micropattern are defined by six com-

plex numbers [0,l,a,b,cl,c 2 ] where it is required that the real components

of a and b sum to one, Re{a+b} 1 1, and that imaginary components of a,

b, cI and c2 satisfy Im{a + b -
2 cil = 0, i = 1,2. The centers of the

6-disks comprising the other micropattern are then given by the complex

numbers [0,1, 1-a, 1-b, cl, c ] where ci represents the complex conju-

gate of ci. Each micropattern is used to generate one texture in the

texture pair. To generate a texture the micropattern is regularly placed

and randomly rotated. The resulting texture pair has textures with

identical second-order probabilities.

The other new synthesis method developed is called the "most general"

method. This procedure will generate microapatterns containing any number
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of disks or even elements which are not disk but arbitrary shapes and

contours. This procedure is a generalization of the 4-disk method de-

scribed above. The most general procedure uses three "sets" which

correspond to the disks centered at the points K, P and the pair (L,M)

of the 4-disk method. Each set represents either a single object such

as a disk or a collection of objects such as several disks. The only

requirement is that object or objects comprising the set satisfy certain

symmetry requirements. For example the set corresponding to the disk

centered at P and Q must be reflectively synetric about the line passing

through P and Q, i.e, PQ. Let S be the point of intersection between

PQ and a line perpendicular to PQ passing through K. The set corresponding

to the disk at K must be reflectively symmetric about the line KS.

Finally the set corresponding to the combination of the two disks centered

at points L and M must be rotationally symmetric about the point S for

a rotational angles of 1800.

In this procedure one micropattern is composed of the sets centered

at K, L, M and P and the other micropattern of the sets centered at K, L, M

and Q. The textures are generated by regularly placing and randomly rotating

the patterns.

Using these two new procedures together with the 4-disk method the in-

vestigators were able to locate a number of good counterexamples to the

Julesz conjecture. Further, they used these counterexamples to formulate

a new conjecture concerning spontaneous human discrimination of texture.

The new conjecture states that the human texture discrimination system is

based on two types of perceptual analyzers (or detectors): Class A and

Class B. The Class A analyzers are determined by differences in second-

order probabilities or as Julesz refers to them as dipole statistics.
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The Class B analyzers refer to those features the visual systera may ex-

tract independent of second-order statistics, in particular, when the

second-order statistics are equal.

In [17] and [18] a total of three Class B detectors were found. These

were the quasi-collinearity detector, the corner detector and the closure

detector. To defend the existence of the Class B detectors, Caelli and

Julesz [17] state, "texture discrimination cannot be a strictly statistical

problem but obviously the inherent structures of the visual system must

be taken into account."

Caelli, Julesz and Gilbert [18] make one point very clear. They state,

"... the reader should be reminded that out of the
thousands of iso-dipole texture pairs that were gene-
rated at random by any of the known methods only a

tiny fraction yielded discrimination, and out of

these rare events did we select our demonstrations.

Therefore, it is regrettable that the reader was not
shown an adequate number of typical examples of the

vast majority of iso-dipole texture pairs that were

found not to be effortlessly discriminable."

All the syi.thesis procedures mentioned thus far have been designed

to give texture pairs with identical second-order probabilities. They

cannot be used to create texture pair which have identical higher-order

probabilities, i.e., third-order, fourth-order, etc. The next snythesis

procedure described gives texture pairs with identical third-order pro-

babilities and hence identical gecond-and first-order probabilities.

This procedure was described in a 1978 by Julesz, Gilbert and Victor [19].

The motivation for creating this new synthesis method was to continue

the search for more Class B detectors.

This synthesis method generates what are termed even and odd textures.

Consequently we will refer to this method as the Even-Odd Method. To

define what constitutes an "even" or an "odd" texture let g(i,j) - 1 if the
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i,j t h pixel is black and g(ij) - 0 if this pixel is white. An even texture

is one where

g(i,j) + g(i+l,J) + g(ij+l) J
- g(i+lJ+l) (3)

is an even number for all ij. An odd texture is one where Eq. 3 gives

an odd number for all ij.
II

Thus texture pair shown in Figure 10 is an example of these even and

odd textures. The texture on the left is an even texture and the texture

on the right is an odd texture.

Note that while these textures have identically the same first-,

second-and third-order probabilities they can easily be visually dis-

criminated. Julesz et al [19] attribute the discrimination of the even and

odd textures to the existence of a Class B detector, called the granularity

detector.

To generate either the even or odd texture one selects an arbitrary

row and column of the image to paint first. Each element of this row

and column is independently assigned a gray level according to the pro-

bability law P(0) - I and P(l) - . For convenience assume that row 0

and column 0 are the ones that were picked. Note that the element 0,0

only needs to be painted once.

After row 0 and column 0 have been painted the rest of the image

is assigned gray levels. An even texture is created by using the equa-

tion.

g(ij) - [g(i,0) + g(O,J) + g(O,O)] mod 2.

An odd texture is created by using the equation

g(i,j) - [g(i,o) + g(o,j) + g(o,0) + ij] md 2.

The last study of interest was the one conducted by Gagalowicz [20].

The purpose of the study, like the others, was to find and analyze
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Figure 10. A texture pair composed of an even texture (en the left) and

an odd texture (on the right). The two textures comprising

this texture pair have identical first-, second-, and third-
order probabilities.
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counterexamples to the Julesz conjecture. What makes Gagalowicz's

study of interest is (a) he developed an interesting synthesis procedure

for generating counterexamples and (b) his examination of the counter-

examples he generated lead him to a different set of conclusions about

the factors involved in the discrimination of these textures.

As to the Gagalowicz synthesis method, this procedure has three

input parameters. These are the number of gray levels, L, to appear in

the texture, the number of pixels, K, to appear in each elementary build-

ing block or tile of the texture, and finally the geometry of this

building block or tile. For example, one possibility is K horizontally

adjacent picture points with L possible gray levels. Here K is the pattern

size and the horizontal adjacency gives the shape of the pattern. For

this example there are a total of KL possible patterns or tiles. The

idea is to tile in the plane using these patterns so that there are no

holes or overlaps. The choice of which of the KL patterns to place at

any given location is done randomly by independently selectii.g the patLern

according to a probability law governing the frequency of occurrance of

each possible pattern. The trick to the procedure is the mechanism

used for computing the probability law so that the second-order probabili-

ties of the resulting pattern are what they are desired to be.

To see how the probability law is computed we will introduce the

following conventions. The subset D of 12 , the two-dimensional integer

lattice, represents the pattern shape to be used in the generation process.

It will be assumed that domain of X(n,m) is D which is finite, namely

containing only K points.

The second-order probabilities for X(n,m) are the probabilities

P[(Xi = Li), (Xj - Lj)] for X to be equal to Li in position i, and to be
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equal to L in position J, for all positions i,JcD. Note we have dropped

the double arguments for X(n,m) for notational convenience where X i

means X evaluated at one of the K points at which it is defined.

It is possible to synthesize the process X in the finite domain D

of K points, if we know its Kthorder probabilities,

PM = L1), (X2 - L2),...,(XK = LK)]

- P(L1,L29 ... ILK).

Here P(LI,L2 ,... ,LK ) are the probabilities for X to be equal to L1 in

position 1, to be equal to L2 in position 2,..., to be equal to LK in

position K.

The objective is to construct P(LIL 2 ,...,LK) from a priori given

second-order probabilities P[(X i = Li), (X. = L.)I. For convenience

we write P[(Xi = Li), (X. = L )] as Pij (LiL).

To see how this can be done one need only remember that the Kth
-

order probabilities are constrained by the second-order probabilities.

These constraints take the form of partial summations. In particular

L-1 L-1 L-1 L-1 L-1Pi~j(LiLj) = E Z ... E Z ... E
L1 =0 L2 =0 Li_1 Li+1 Lj+I'O LK=O

P(LI,L2,...,Li I , Li , Li+l,..., L JI, Lis LJ+ I . . . LK)  (3)

for i,j, i,je {1,2,...,K), and LmE {O,,. ..,L-I}, i= 1,2,...,K. There

are exactly L2 C such equation constraints where C2 represents the

number of possible combinations of K things taken 2 at a time.

Further constraints are placed on the Kth-order probabilities,

since the first-order probabilities P(Xi = Li) - Pi(Li). These first-

order probabilities must also be obtainable from the Kthorder probabil-

ities through partial summations.

These constraints are
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L-1 L-I L-l L-l

Pi(Li) = z i... E I ..... Z P(Li,L 2 ,...,Lii,Li+i ... ,LK)
LI 0 L2 =0 Li l=0 L = (4)

i~l (4)

There are exactly LC1 such equation constraints where CK represents

the number of combinations of K things taken 1 at a time. It should be

noted that the first-order probabilities P±(Li) are directly obtainable

from the a priori given second-order probabilities Pij(LiL), through

another partial summation process.

The final set of constraints on the K horder probabilities are

L-1 L-1 L-1
E £I P(LIL 2 ,...,L) = 1 (5)

L1 0 L 2=0 LK=0

and

P(Li,L 2 9....,LK) > 0 (6)

for LI,L2,... ,LK {,1,...,L-l). Note that there are KL constraints of

the form given by the inequalities of Equation 4.

Finally, it should be noted that these constraints don't usually

uniquely specify the Kth-order probabilities. Indeed usually there are

infinitely many solutions which satisfy these constraints assuming, of

course, K and L are sufficienlty large. It should also be noted that the

number of constraints grow rapidly in relation to increases of K and L.

In recognition of these problems Gagalowicz developed a scheme for

reducing the total number of constraints by removing all the redundant

ones. In particular he was able to reduce the number of constraints of

the type given in Equation 3 from L2 C2 to (L-1)
2C2. Further he was

able to reduce the constraints of the type given in Equation 4 from LC 
.

Secondly he cast the problem of determining the Kthorder probabilities in
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terms of the a priori given second-order probabilities as a linear programming

problem. What gives uniqueness to the solution process in the appropriate

albeit arbitrary selection of a cost functional. (For more information

on linear programming in general and the simplex method in particular

see [25] and (26].)

Using this synthesis method Gagalowicz generated two counterexamples to

the Julesz conjecture. One of these is shown in Figure 11. In this ex-

ample K-7 and L-2. The pattern geometry was 7 horizontally adjacent

points. The pattern on the left was generated with the pattern probability

assignments P(-,l,l,l,l,l,l) 1/8, P(1,1,2,1,2,2,2) - 1/8, P(1,2,1,2,2,

1,2) = 1/8, P(1,2,2,2,1,2,1) = 1/8, P(2,1,1,2,1,2,2) = 1/8, P(2,1,2,2,2,

1,1) = 1/8, P(2,2,1,1,2,2,1) 1 1/8 and P(2,2,2,1,1,1,2) = 1/8 where 1

is black and 2 is white. The pattern on the right was generated with

each of the 128 patterns having a probability of occurrence of 1/128.

The cost functional used to generate the probability of occurrences of

the pattern on the left was one which maximized the magnitude of P(l,l,

1,1,1,1,1). Both the textures in Figure 11 have identical second-order

probabilities with each equalling 1/4.

Concerning his experiments using his synthesis procedure, Gagalowicz

points out that all attempts made to generate homogeneous looking textures

which have identical second-order probabilities resulted in texture pairs

which were not discriminable to the human observer. The only counter-

examples which he was able to generate were those in which at least one of

the two textures had inhomogeneities, I.e. such as the black lines appearing

in the texture on the left in Figure 1. The more inhomgenieties that

occur the better the visual discrimination. Further, he states that the

homogeneous background areas of the textures usually look the same for both
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Figure 11. Two visually distinct texture pairs which have identical
first- and second-order probabilities. These textures

were generated by Gagalowicz in [20].
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textures which explains the difficulty in determining the exact boundary

between the textures. (Again refer to Figure 11.)

The above observations lead Gagalowicz to a hypothesis about the visual

discrimination process. He claims that in those instances when textures

which have identical second-order probabilities are not discriminable,

the second-order probabilities computed locally correspond well to second-

order probabilities computed globally. But, he continues, when inhomo-

geneities are present the local second-order probabilities disagree with

the global second-order statistics. It is this difference that is per-

ceived by the eye and used for discrimination.

The last synthesis procedure to be discussed is a very limited

method that was developed a few years ago by the authors. The reason

for presenting this procedure is that it generates a counterexample to

the Julesz conjecture which will prove useful in our discussion of our

analysis methods.

To describe how this synthesis method works consider the patterns

shown in Figure 12. The two patterns in part (a) of the figure are used

to generate one texture while the four patterns in part (b) are used to

generate the other texture in this counterexample. The generation pro-

cedure is a simple one and the same procedure is used to generate each

row. The first element of each row is selected according to the probabil-

ity law P(i) - 1/n where i represents the ith pattern and n represent

the total number of patterns being used to generate that texture, i.e.

n - 2 or 4. The rest of the row is completed by merely repeating the first

element of the row. Figure 13 shows a texture pair generated by this pro-

cedure. These two visually distinct textures have identical second-order

probabilities.

The background information presented above leaves little doubt about
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Figure 12. The patterns used to generate a texture pair which have identi-
cal second-order-probabilities. The patterns in (a) are used
to generate one texture; the patterns in (b) are used to gener-
ate the other texture.
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Figure 13. A texture pair generated using authors' generation procedure.
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a number of points. First, all investigators involved in the search for

counterexamples to the Julesz conjecture have reported that the vast

majority of texture pairs which have identical second-order Irobabilities

are not discriminable by the human visual system. These observations

are supported by the number of successful uses on natural occurring textures

of the SGLDM algorithm and other texture algorithms which measure all

or part of the second-order probabilities. Next it is quite clear that

there are some very strikingly visually different textures which have

identical second-order probabilities. Consequently, the known counter-

examples to the Julesz conjecture cannot be ignored even in light of the

difficulty of producing these examples. Finally, there is substantial

disagreement as to how the human visual system goes about the discri-

mination of the known counterexamples.

In what follows we will show how these counterexamples, or at least

a representative subset of the counterexamples, can be discriminated by

the SGLDM. The method of analysis can be termed a global/local procedure

where first a global analysis is done and then a local analysis is per-

formed using the same basic methodologies as were used globally. This

approach was impart suggested by Gagalowicz [20]. This method of procedure,

i.e., applying the same techniques both globally and locally has in the

authors'minds more of an esthetic appeal than the concept of Class A and

Class B detectors. Further, and this is important, the global/local anal-

ysis methods used are exactly the same type as those required to analyze a

simple periodic texture. The procedure used on periodic textures was

described in M1] and required a global analysis to impart find the period

parallellogram unit pattern. Then a local analysis is required on the

various unit patterns. As such the methods used to discriminate the
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counterexamples do not represent special or unusual techniques arrived at

just to discriminate these textures but rather represent a natural procedure

required to discriminate any texture.

For purposes of this discussion we will lump all the known counter-

examples into two groups. The first group is called the pure group. A

texture pair is in the pure group if there are no common patterns appearing

in the two textures comprising the pair. Texture pairs generated by the

4-disk; 5- and 6-disk; most general; and even/odd methods are in the pure

group.

On the other hand a texture pair is in the impure grouping if the

two textures do share comon elements. Texture pairs generated by the

Gagalowicz procedure and the authors' synthesis method will be in the

impure group. It should be noted that it might theoretically be possible

for the Gagalowicz method to yield texture pair in the pure group but the

two counterexamples he has presented thus far both are in the impure

group.

Differentiating the two groups is done because one would expect

and want a texture pair in the pure group to be perfectly discriminated.

That is, one would expect the classification accuracy to be 100% since

the two textures comprising the pair do not share any common patterns.

On the other hand perfect discrimination of impure texture pair is im-

possible. One may get classification accuracies arbitrarily close to lOOZ

but perfect classification is impossible.

We will begin by considering the pure group of counterexamples. In

particular we will begin by considerinS a counterexample generated by using

the 4-disk method. This counterexample is shown in Figure 14.

It is important to make a few observations. First the 4-disk, 5-
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Figure 14. A visually distinct texture pair generated using the 4-disk
method. These two textures have identically the same first-
and second-order probabilities.
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and 6-disk and the most general method are all very similar. They all

use the same basic trick to generate texture pairs with identical second-

order probabilities. Consequently, considering the 4-disk method, which

is the simplest procedure of the three, is all that is needed to show how

the discrimination could be performed on texture pairs generated by any

of these methods.

Next, since the same basic trick is used in the generation of all

the texture pairs created by the 4-disk method, albeit that the pattern

geometry varies, we need only consider one example texture pair gener-

ated using this method. Further to make the analysis as simple and

as understandable as possible we will use one of the simplest of the

example texture pair which can be generated by the 4-disks method.

This texture pair is shown in Figure 14. Figure 15 shows the micro-

patterns used to create the texture pair of Figure 14. Also shown in Fig-

ure 15 are labeled "dipoles" of each of the tiles. These "dipoles" are

vectors which show the relative geometry of the patterns. One can show

that these two textures have identical second-order probabilities by count-

ing the number of times a particular labeled dipole occurs in each texture.

This count is accomplished by merely counting the number of occurrences of

that dipole in the tiles used to create the texture. It can be easily

verified that each dipole occurs the same number of times in each texture.

What makes this example of the 4-disk method simple is that the geo-

metry of the disks have been chosen so that only four angular rotations

must be used to get the second-order probabilities of both patterns to

be equal. These rotation angles are 0", 90, 1800 and 2700.

A method for discriminating these two textures proceeds as follows.

First the spatial gray level dependence matrices are computed globally

for several d and 0 values. Since the two textures have identically
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Figure 15. The set of micropatterns used to generate the texture pair of
Figure 14. (a) is the set used to generate the texture
on the left. (b) The set used to generate the texture
on the right. Also shown are the dipoles of each of the
micropatterna.
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the same second-order probabilities the resulting corresponding spatial

gray level dependence matrices would be approximately equal (remember

there is an estimation error) for the two textures. Hence, the textures

cannot be discriminated using this global analysis. However, the inertia

feature computed from both textures can be used to estimate the size and

shape of the period parallelogram unit pattern for each texture. Obviously

the calculation yields the same size and shape unit pattern for both textures.

Appropriately centering this size parallelogram, in this case square

region, allows the textures to be decomposed into a series of micropatterns.

These patterns are shown in Figure 15.

The process continues by extracting the spatial gray level de-

pendence matrices from each of the local square regions. It is these

spatial gray level dependence matrices which will allow the discrimination.

In particular it can be shown that the spatial gray level dependence ma-

trices computed for 6 - rl, 6 - r7, 6 - r8 and 6 - r4 will allow perfect

discrimination of the two textures.

The interesting point about the above example is that the global

calculations indicate the scale on which the local calculations need be

performed.

Next let us consider the even/odd textures. These textures are pure

and hence theoretically one would desire perfect discrimination between

the two. The even/odd textures as well as those generated by the Gagalowicz

and the authors' synthesis procedure are very interesting in terms of the

global/local analysis procedure.

The analysis of these patterns proceeds as above. The spatial gray

level dependence matrices are computed globally for several d and * values.

Since these textures have identical second-order probabilities the resulting
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corresponding spatial gray level dependence matrices will be approximately

equal. Consequently no discrimination on the global level is possible.

However, unlike the above an examination of the inertia feature com-

puted globally seemingly gives no information about the scale on which

the local analysis should proceed. The inertia feature is approximately

constant with value . This is because all the second-order probabilities

for the two textures have value .

The apparent failure of the global anlaysis to provide any informa-

tion concerning the scale of the local analysis will be considered later.

For now, let us concentrate on showing that the local analysis will

allow the discrimination of the textures. To see this consider the pat-

terns shown in Figure 16. These patterns represent all the 2 x 2 funda-

mental unit patterns of the even and odd textures. Also shown in the

figure are the horizontal spatial gray level dependence matrices compu-

ted for these patterns. Note that the values of the spatial gray level

dependence matrices computed from the 2 x 2 patterns making up the odd

texture are different from values of the spatial gray level dependence

matrices computed from the 2 x 2 patterns comprising the even texture.

This difference could be used to discriminate them with 100% correct

classification.

It should be noted that the value of the inertia feature computed

from the odd texture pattern spatial gray level dependence matrices of

Figure 16 is equal to h in all cases. While on the other hand the value

of the inertia feature computed from the matrices of the even texture

is never equal to I. Consequently the discrimination rule for classifying

these textures is that if the horizontal (dl) inertia feature - classify

the sample as part of the odd texture otherwise call it part of the even

texture.
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ODD TEXTURE EVEN TEXTURE

S(6),6 - (1,00) S(6),6 - (1,00)
2 x 2 PATTERNS MATRICES 2 x 2 PATTERNS MATRICES

0 1/2 0 0
1/2 LO 1

W 1/2 1/21 W0' 1/2]

/2 1/21 W1

E [ /2 2 3

0 1/2 0 

1/2 1[:2 12

1/2 0 0 1/2

1/2  0 j 2  0

~1/2 30 [0 1/2 l/L- 2] 1 0

Figure 16. The set of all possible 2 x 2 patterns for the even and odd
textures and the corresponding spatial gray level dependence
matrix, S(6),6 - (1,00) computed from each of these patterns.
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Now that it has been established that a local analysis will allow

the discrimination of the even and odd textures, let us return to the

seeming failure of the global analysis to indicate what scale- at which

local analysis should be conducted. To address this question we examined

the unit patterns of the even and odd textures which were of the following

sizes, 2 x 2, 4 x 4, ' x 8 and finally 12 x 12. In this analysis we

wrote a computer program to generate every possible unit pattern of these

various sizes. From each of the unit patterns for a particular size we

extracted the horizontal (d-l) spatial gray level dependence matrix.

For each possible size and each of the even and odd textures we created

a histogram of the relative frequency of occurrence of each of the possible

horizontal spatial gray level dependence matrices. The results of this

experiment indicated that regardless of the scale used 2 x 2, 4 x 4, 8 x 8, v

or 12 x 12, the even and odd textures could still be discriminated with

100% accuracy based on the values of the horizontal spatial gray level

dependence matrices. Further we found that the inertia feature still

provided, regardless of scale, 2 x 2, 4 x 4, 8 x 8, or 12 x 12, a means

for obtaining a 100% correct discrimination of the two textures. In

particular, in each instance the same classification rule could be used

to do the discrimination, if the horizontal (d-1) inertia feature equals

label the sample as part of the odd texture otherwise call it part

of the even texture.

We did not consider scales bigger than 12 x 12 pixels only because of

the computational time and memory involved in doing the calculations.

What these experiments seemingly indicate is that the scale on which

the local analysis proceeds may not be all that important in this case.

If this is true then the fact that the inertia feature is constant for
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all d and e should not be upsetting. We will consider this problem further

in the next texture pair analyzed.

As of this point we have shown either directly or by inference how

each of the known counterexamples to Julesz conjecture which are members

of the so called pure group could be discriminated. In each instance a

lOOZ correct classification accuracy was obtained. We now consider the

known counterexamples to the Julesz conjecture which are members of the

impure group. In doing so we learn more about the nature of the global/

local analysis. In particular, examine more examples of the phenomena

when the inertia features is completely flat for all d and 0.

We begin our examination of the impure group by considering the

texture pairs generated using the authors' synthesis method. The global

analysis of these textures while not allowing discrimination does show

that the two textures are both periodic in the 8 - 00. For 6 0 00 the

inertia feature is completely flat or approximately flat and hence no in-

formation concerning the scale at which the local analysis should proceed

is provided.

As we did above when a similar set of circumstances prevailed them-

selves, we will show first that a local analysis will allow the discrimination

of these two textures. Figure 17 shows all the fundamental 2 x 4 patterns

for each of the two textures. Note that the horizontal dimension of the

pattern results from the detected periodicity and the measure of the

period provided by the inertia measure. Also shown in the figure are the

values of the vertical (d-1) spatial gray level dependence matrices computed

from each of the fundamental 2 x 4 patterns. One should observe that the

values of vertical (d-l) spatial gray level dependence matrices are the

same for patterns 1, 2, 5, 6, 8, 11, 12, 15 and 16, in texture 2 and the
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four patterns and in texture 1. While this at first mijht seem a short-

coming, it is in actuality not a problem. Patterns 11, 12, 15 and 16, rep-

sent translations or shifts of the patterns of texture 1. Such shifts

could occur naturally as one goes from global to local analysis, i.e.

through imprecision in placing the regions to be used in the local analysis.

Table 2 shows the probability of occurence of each possible vertical

matrix for each of the two textures. An examination of these class con-

ditional probabilities will show that classical pattern recognition methods

will allow the discrimination of the two textures. In particular, texture

1 can be identified with 100% accuracy. On the other hand 50% of the tex-

ture 2 samples will be correctly labeled while the rest will be labeled

texture 1.

Now that it has been shown that a local analysis will provide dis-

crimination, we would like to further consider the ramifications of the

inertia feature being constant at for all d and e 0 00. To examine

this problem we will consider variety of scales for conducting the local

analysis and examine how these variations affect classification accuracies.

The scales considered are 2 x 4, 4 x 4, 8 x 4, and 12 x 4.

The method of procedure was to generate every possible pattern of a

particular size for each texture. For each pattern the vertical spatial

gray level dependence matrices were extracted and a histogram of the

probability of occurence of each matrix value was computed.

To see how this all works, let us consider only the vertical (d-l)

spatial gray level dependence matrix. We extracted this matrix from

all possible patterns of sizes 2 x 4, 4 x 4, 8 x 4, and 12 x 4. For

each size considered we made a histogram of all the possible matrix

values for each texture. The results indicated that the classification

accuracy using just this one matrix did not vary with pattern size.
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Probability
Probability of of Occurrence

All possible Occurrence in Texture in Texture or
S(6),5 = (0, 90°) on Left in Figure 12 Right on Figure 12

1/2 0 .50 .25

1/4 1/4
0.0 .50

1 4 1/4

F0 1/21L 12 J.50 .25

Table 2. The set of all possible vertical (d 1 1) spatial gray level
dependence matrices for the 2 x 4 patterns of figure 17.
Also given are the probabilities of occurrence of these matrix
values in each of the two textures of Figure 13,
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Next we performed the same type of experiment only we used two

vertical matrices, d-l and d-2, used in combination. In this instance

the pattern sizes considered were 4 x 4, 8 x 4 and 12 x 4. Again it was

observed that the classification accuracies obtainable using the two

matrices did not vary with the size of the pattern from which they were

extracted.

Figure 18 summarizes the set of experiments performed. The theoreti-

cal limit shown for the probability of error takes into account the impurity

of the patterns.

An interesting observation can be made concerning the data presented

in Figure 18. The data shown would seemingly indicate that if one wanted

to achieve the best possible classification accuracies in discriminating

these two textures one should conduct the local analysis on as large an

area as possible and consider as many d and e values as possible. Given

this observation it is conceivable that the inertia measure being constant

for all d and e with value equal to ; could imply that one should conduct

the local analysis on as large a scale as is possible. The interesting

point is that this interpretation is consistent with the procedures now

used. To determine periodicity one looks for minimums in the inertia

feature value. On textures where the inertia feature is perfectly flat

the minimum occurs at infinity.

The last counterexample we have left to examine is the one generated

using the Gagalowicz synthesis procedure. The global analysis of the

two textures comprising this texture pair again returns only that the two

textures cannot be discriminated globally. There is no information again

concerning the scale at which the local analysis should proceed.
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OF MISCLASSIFICATION
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NUMBER OF ROWS

Figure 19. The theoretical versus actual rate of misclassification ob-
tained for the texture on the left in Figure 13. The classi-
fication rates are shown as a function of the number of rows
in the region from which the spatial gray level dependence
matrices were computed. As can be seen when only one d value
is considered, namely d - 1, an error rate of 50% is obtained
for all n values used. When two d values are used, namely,
d - 1 and d - 2, an error rate of 25% is obtained. Again this
misclassification rate seems independent of the size of n.
Finally notice that when three values of d, namely, d - 1, d - 2,
d - 3 and d - 4 are used, a misclassification rate of 3.61%
is obtained. Again this error rate seems Independent of the
values of n.
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A local analysis will allow the discrimination. In particular the

local analysis can be used to isolate the inhomogeneities which allow the

visual discrimination of these textures.

Unfortunately at this time we do not know whether for these textures

the discrimination accuracy is independent of the region size considered.

The difficulty in making this determination stems from the very large num-

ber of possible patterns that need to be considered. This number gets so

large so quickly that it is difficult to analyze enough cases to arrive

at any meaningful conclusions.

It should be pointed out that the global/local analysis procedure

described can also be used to discriminate the texture pairs in Figures 6 and

7 . Note that these textures are not spontaneously discriminable to humans.

The above remarks lead us to Assumption 3.

A4iumption 3: I tw textuAe4 ae viuaty diZtinct then theAe ex At

a region 4ize 6uch that the dL.tibution o6 utimated 6cond-otdeA p'Wb-

abitLty ma£t'ce.6 computed u Qing -thZ6 kegion ize wiU be diijeAent 6o

.the tio textuxA .
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C. On Deveoping New FeatueA 6o the SSA

In the last section we showed that the known counterexamples to

the Julesz conjecture could be discriminated using the SGLDM. Further,

it was shown that the discrimination process used was not an artifically

conceived one but rather one that follows the natural operating proce-

dure of the SSA.

The fact that the discrimination of these textures could be accom-

plished in this way was most encouraging to the authors. It further veri-

fied the methodologies being employed. Consequently what remains is to

continue the development of the SSA. We have seen that there are example

texture pairs which cannot be discriminated using only the inertia feature,

the only feature currently in the SSA Level 0 feature set. What remains

then is defining more Level 0 features, features which when used as data

for Level 1 analysis will allow inferences to be made about visually per-

ceivable qualities of the patterns being examined.

Obviously the structure of the SSA is such that its overall cap-

abilities depend completely on having high quality Level 0 features.

Since the Level 0 features are critical to total system performance one

must be very careful in defining them. One needs a formal process which

relies heavily upon experimentation and/or theoretical development.

Since our objective is to have features which measure visually per-

ceivable characteristics of patternsand since very little is known about

the mathematical structure of the visual system, a theoretical develop-

ment does not seem possible. It might be possible to do a theoretical

development if one would restrict the class of textures considered to be

those which can be represented by some well understood set of random

fields. However, for our purposes this restriction would be self de-
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feating. We are interested in developing methods that can be used on

any texture analysis problem.

Consequently experimental approaches seem to be the way to proceed.

Given this fact what needs to be developed then are a set of techniques

which will allow us to hold certain parameters constant and allow others

to vary. Within the context of the feature development problem this means

that one must have methodologies available which will allow the generation A

of texture pairs which have some feature values identical for both textures

and some one or more feature values different.

In the following we present our progress in developing a framework

for the feature definition problem. In particular we will state our design

objectives and the associated design steps. Further we will give some

mathematical techniqes which can be used in the parametric studies.

We begin by stating our design guidelines for feature development.

These guidelines do not guarantee uniqueness in the feature development

process, i.e., two investigators using these guidelines might arrive at

two completely different feature sets both of which meet all the design

criteria. However, in most engineering design problems the design ob-

jectives seldom completely specify the resulting system. These guidelines

embody, many of the desirable traits one would like in a feature set.

The design guidelines can be briefly stated as follows.

DGl. Each feature in the feature set should
"measure" some visually perceivable quality

of a texture pattern.

DG2. The features in the feature set should be

"independent."

DG3. Given any visually distinct pair of textures
there should be at least one feature in the

feature set such that the value of this feature
is different for the two textures comprising
the pair.
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To avoid any ambiguity, two words, namely "measure" and "inde-

pendent", need be precisely defined. For a feature to "measure" a vis-

ually perceivable quality requires that the feature value be a monotonic

strictly increasing function of that quality. That is as the visual

quality becomes more prominent as the value of the feature increases.

The meaning of the word "independent" can best be described by

example. Suppose that one has a feature set comprised of three fea-

tures, Fl, F2 and F3 . These features are said to be independent if:

i) there exists a visually distinct texture pair
such that the expected values of the features
F2 and F3 are the same for both textures in the

texture pair but the expected value of F1 is

different for the two textures;

ii) there exists a visually distinct texture pair such

that the values of F and F3 are the same for both
these textures but the expected value of F2 is

different;

iii) there exists a third visually distinct texture pair
such that the expected values of features F1 and F2
are the same for both these textures but the expect-
ed value of feature F3 is different for these two
textures.

The extension of the above example to n features is straightforward.

DG2 substantively requires that each feature be uncorrelated.

In these design guidelines we require that the features measure

visually perceivable qualities of patterns. From our discussions con-

cerning the SSA we automatically know then that these deisgns apply to

the Level I features since Level 0 cannot directly measure visual qual-

ties. However, the challenge here is to define the Level 0 features

in such a way that it can clearly be substantiated that a Level 1 fea-

ture can be defined which will measure a visual quality. This was pre-

cisely the technique used in [1] when we showed that the inertia feature

could be used to detect periodicity.
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The above design guidelines require certain steps be performed in

the design process. If the investigator is iteratively defining features

as would normally be the case, then the following steps are required:

DSl. demonstrate the need for an additonal feature
in the feature set;

DS2. abstract the visual quality which need be
measured and design a candidate feature to
measure this quality;

DS3. establish that the candidate feature does mon-
otomically measure this visual quality;

DS4. establish that the candidate feature is "in-
dependent" of the other features already
defined.

If one can perform all these steps then according to the design guide-

lines the candidate feature may be added to the feature set.

Of course, design guidelies are of utility only if the design steps

associated with these guidelines can, in fact, be reasonably performed.

Consequently, a careful examination of the design steps associated with

the stated guidelines are in order.

Let us consider DSl. Suppose one has already defined n features,

Y'lY2' ''.' Yn" To demonstrate that a new feature need be added to the

feature set, one must find a visually distinct texture pair which has

identical values for all the yIY 2 ,..., Y.. That is, a visually dis-

tinct texture pair must be found which cannot be discriminated by

any of the existing features comprising the feature set. To find such a

texture pair requires one to be able to create texture pairs which have

controllable feature values. Obviously too, it would be helpful if

there were some theory one could employ which would restrict the di-

mensionality of the space that must be examined to find such a visually

distinct texture.
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DS2 requires one to abstract a visual quality that is not being

measured by any of the existing features and then to define a candidate

feature to measure this quality. Of all the design steps this is the

one which is most heavily dependent on the creativity of the investi-

gator. Nonetheless, even here, certain basic tools are useful. First,

one must have some mechanism for creating textures which have controllable

feature values. That is, one only wants to look at texture pairs which

have all the previous feature values held constant. Another tool that

would be useful would be to have a mechanism by which to characterize all

textures which have identical feature values for the n previously defined

features. If these tools were available, the difficulty of the problem

set forth in the design steps could be greatly reduced.

DS3 requires one to validate that the candidate feature does in-

fact monotonically measure the visual quality abstracted. The best

way to assure this is to be able to generate sets of textures such that

all textures in a set have the same values for each previously defined

feature but which have steadily increasing values for the candidate

feature. Examining several such sets of textures should indicate whether

the candidate feature is a monotonic function of the abstracted visual

quality. The procedures used in DS3 are also applicable to DS4. DS4

merely requires that one be able to demonstrate a visually distinct tex-

ture pair such that both textures comprising this pair have identical

values for all the previously defined features but that they have differ-

ant values for the candidate feature.

-62-



From the above it should be clear that what is needed is a.methodol-

ogy for synthesizing textures which have controllable feature values.

In what follows we will describe such a procedure. This procedure can

be used in the development of Level 0 features for the SSA.

Basically the mathematical techniques employed to provide this syn-

thesis capability have two basic steps. The first step is to find two

second-order probability matrices which have identical feature values

for any group of features, say FI,F 2 and F3, and a maximum difference in

any selected feature, say F4 . The second part of the process uses these

two second-order probability matrices to create a texture pair such that

the values of FI,F2 and F3 are identical for all d and 0 and the value

of F4 is different for the two textures.

In formulating this synthesis procedure an assumption is made con-

cerning the general form of the Level 0 features. While this assumption

is not absolutely necessary in that other synthesis methods could be de-

rived without it, the assumption greatly simplifies the calculations

required.

A66umption 4: AMt Level 0 eatw.ue, uwU be ,tLia4. with e6pect to

the etement,6 &L,j,6) o6 the ma-t.x S(6). Thot 6 eah Level 0 ,ea2tue

Z6o6 the 6o~zm

Z aij s(ij,6).

While at first this assumption might seem arbitrary and very re-

strictive, it is important to note that it is not a restrictive as it

might seem. First, it can be argued that the important texture informa-

tion in a spatial gray level dependence matrix is determined by distri-

bution of the probabilities within the matrix, i.e., the distribution with

respect to ij location. Classically the way this type of distribution
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has been measured is by using various moment funtions. The interesting

point is that any moment defined on the spatial gray level dependence

matrix is a lirear function of the elements s(i,J,6). Consider for ex-

ample the inertia feature; this feature is a type of moment and is defined

by

EE (i _ j)2 s(ij,6).
iij

Note that this expression is linear with respect to the elements s(i,j,6).

Further it is important to note that not only are all classical

types of moment function linear functions of the elements s(i,J,6) but

that there are many other functions which are linear with respect to

the elements s(i,j,6) which are not moments. Consequently the linearity

assumption should not seem all that restrictive.

Using the linearity assumption the equations defining two spatial

gray level dependence matrices, S1 - fs1(ij)J and S2 - [s2 (i,J)I, which

have n feature values equal and one feature value being maximally diff-

erent are given by the following:

Z [cij 8s1 (i,J) - cij s2(i,J)] = 0 (1)

E(aj s1 (i,J) - a 2(i,j)]

E L[ai2 s(ij) - ai 2(i,j)] 0

(2)

E E(ai s(ij) - a, 2(iJ)]  0
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E E sl(i,j) - 1

Z Z s 2 (ij) - 1

E sl(i,J) - P(J) for all j

E s1 (i,j) - P(i) for all i

E s2(i,j ) - P(J) for all J

r s 2 (i,J) - P(i) for all i

s l (ij) > 0 for all ij

s 2 (i,j) > 0 for all ij

where cij are the coefficients defining the feature whose value is to be

maximally different and al 2 n
i l i r a . , ... , aij represent the coefficients

defining the n features which are to have identical values. Here the

al are the coefficients defining the first feature, a are the coeffi-
ii ij

cients defining the second feature, etc. Finally the P(i) represents

the first-order probability of the gray levels for the two patterns. Here

we let P(i) = 1/L for 0 < i < L - 1 where L is the number of gray levels to

appear in the two synthesized textures.

It should be noted that the notation used to represent the matrices

S1 - [sl(i,j)] and S2 [s 2 (i,J)] is different than that used to repre-

sent typical spatial gray level dependence matrices. This notational

difference is employed to avoid confusion since these matrices are only

used to generate the appropriate textures.

These equations define in effect a linear programuing problem. Eq. 1

is the cost functional, Eq. 2 and Eqs. 3 being the set of linear con-

straints. This set of equations can be solved using the Simplex al-

gorithm. The resulting values of s1 (i,J) and- s 2 (iJ) define the matrices

S1 and S

The next step in the synthesis procedure is to gemerate tuo texture
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using S1 and S2 such that the resulting texture pair have identical values

for the n features for all d and 8 and different values for the features

selected to be maximally different. As it turns out this too becomes a

linear prograuming problem.

The procedure employed to actually generate the textures is a variant

of the Gagalowicz synthesis procedure. This variation results from the

necessity to

1. consider second-order probabilities different from
1/L2 where L is the number of gray levels;

2. to make the synthesis method require as little input

as possible and hence hopefully making it easier to
use.

In this variant only horizontally adjacent points can be used. Thus

the geometry is fixed. The input parameters are L, K (defined in the

discussion of the Gagalowicz synthesis procedure) and the matrices S, and

S2 . Two textures which result have all the desired properties.

Unfortunately, the only difficulties with this procedure are

1. the complexity of the problem grows rapidly as the
values of K and L increase;

2. only a limited family of textures can be generated
in this fashion.

Nonetheless, this synthesis method will begin to allow us to do feature

development on a sound albeit limited testing basis.

Using the above procedures we have defined a new Level 0 feature

for the SSA. It is call the cluster shade feature. To understand what

this feature does consider the textures shown in Figure 19. These two

textures cannot be discriminated by the inertia feature. They can how-

ever be discriminated by the cluster shade feature. The cluster shade

feature gives information concerning the size and shade of clusters.

In the textures shown in ligure 19 this feature allows the discrimination
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Tigure 19, Two 'Visually distinct textures which cannot be discriminated
by the inertia feature. These two textures, however, can
be discriminated by the cluster shade feature.
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of these textures by sensing the fact that in one texture black clusters

are prominent and in the other texture white clusters are prominent.

As of this writing we are just beginning our search for-other pos-

sible features.
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